# 105. 从前序与中序遍历序列构造二叉树

# 题目

根据一棵树的前序遍历与中序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

前序遍历 preorder = [3,9,20,15,7]

中序遍历 inorder = [9,3,15,20,7]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7
1
2
3
4
5

# 题解

# 递归

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {number[]} preorder
 * @param {number[]} inorder
 * @return {TreeNode}
 */
var buildTree = function(preorder, inorder) {
  if (!preorder.length) return null;
  // 先序遍历第一个是根节点
  let root = new TreeNode(preorder[0]);

  // 找到中序遍历中根节点的位置
  let i = 0;
  while (i < inorder.length) {
    if (inorder[i] == preorder[0]) break;
    i++;
  }

  // 递归生成左右子树 中序遍历中根节点的左边就是左子树,右边就是右子树
  root.left = buildTree(preorder.slice(1, i + 1), inorder.slice(0, i));
  root.right = buildTree(preorder.slice(i + 1), inorder.slice(i + 1));

  return root;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

# 迭代

/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {number[]} preorder
 * @param {number[]} inorder
 * @return {TreeNode}
 */
var buildTree = function(preorder, inorder) {
  if (preorder.length == 0) return null;
  let root = new TreeNode(preorder[0]);
  let s = [root];
  let index = 0;
  for (let i = 1; i < preorder.length; ++i) {
    let top = s[s.length - 1];
    let val = preorder[i];
    if (top.val != inorder[index]) {
      top.left = new TreeNode(val);
      s.push(top.left);
    } else {
      while (s.length && s[s.length - 1].val == inorder[index]) {
        top = s[s.length - 1];
        s.pop();
        index++;
      }
      top.right = new TreeNode(val);
      s.push(top.right);
    }
  }
  return root;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36